

TABLE OF CONTENTS

SNO	PARTICULARS	PAGE NO
1	ABSTRACT	3
2	INTRODUCTION	3
3	PROPOSED WORK	4
4	IMPLEMENTATION	5
5	CONCLUSION	25
6	FUTURE EXTENSION	25

ACKNOWLEDGMENT

We express our sincere gratitude and appreciation to the Government of Tamil Nadu and the Central Government, including the directors, coordinators, and officers involved, for their support in allocating funds to our institution under the RUSA (Rashtriya Uchchatar Shiksha Abhiyan) scheme. This funding has enabled us to enhance the quality and enrichment of our institution's educational programs and infrastructure. We are thankful for their commitment to promoting excellence in higher education and look forward to continuing our collaborative efforts towards further advancement and development.

NAMAKKAL KAVIGNAR RAMALINGAM GOVERNMENT ARTS COLLEGE FOR WOMEN NAMAKKAL

ABSTRACT

The **RASHTRIYA UCHCHATAR SHIKSHA ABHIYAN (RUSA)** scheme aims to address key challenges in the Indian higher education landscape by providing greater opportunities for access and expansion. By supporting both existing and new institutions, RUSA endeavors to rectify existing imbalances and foster equitable access to higher education. A central focus of the scheme is the enhancement of institutional infrastructure tailored to academic requirements, ensuring conducive learning environments. Through need-based grants to institutions within each state, RUSA facilitates targeted support where it's most needed. Additionally, the introduction of job-oriented and industrially relevant courses under RUSA empowers students with the skills needed for self-employment, contributing to national development goals and fostering a more dynamic and competitive workforce. Overall, the RUSA scheme stands as a comprehensive initiative aimed at uplifting the higher education sector and empowering institutions to better serve their students and communities. With the assistance of the RUSA (Rashtriya Uchchatar Shiksha Abhiyan) fund, our institution has made significant improvements to its infrastructure and facilities. These enhancements include the construction of new classrooms, procurement of laboratory equipment, computers, printers, projectors, and interactive touch panels, as well as the renovation of existing laboratories, Basketball Ground and Auditorium. These developments aim to enhance the learning environment and provide students with modern resources to facilitate their academic growth and development.

INTRODUCTION

N.K.R. Government Arts College for Women is named after Namakkal Kavignar Ramalingam Pillai, a renowned poet. Established in the year 1969 with the noble aim of upliftment of rural women moulding them into academically competent, self sufficient and self confident individuals to emerge outstanding in their respective avocations. The College is affiliated to Periyar University and offers 13 Undergraduate courses, 11 Postgraduate courses and Research Programs. The College stepped into 50th year and celebrates its Golden Jubilee in the year 2018 – 2019. Due to its high academic standards, the Institution was awarded Reaccreditation with 'A' Grade by NAAC.

The proposal submitted by Namakkal Kavignar Ramalingam Government Arts College for Women in 2016-17, aligned with RUSA criteria, aimed at enhancing the infrastructure of the institution. The proposal encompasses the construction of new classrooms, renovation of existing laboratories and the auditorium, as well as the procurement of laboratory equipment. The allotted amount is designated to facilitate these infrastructure improvements, ensuring a conducive learning environment for our students.

Fund Allotted

Particulars	Allotted Amount (Rs)
New Construction	70,00,000 (Seventy Lakhs)
Equipments	60,00,000 (Sixty Lakhs)
Renovation	70,00,000 (Seventy Lakhs)
Total	2,00,00,000 (Two Crores)

In March 2017, our institution received a sanction of One Crore under the RUSA scheme, followed by the actual receipt of funds in May 2017. Subsequently, 70 lakhs were transferred to the Public Works Department (PWD) for the construction of Five New Classrooms and the procurement of essential equipment including computers, printers, projectors, and interactive touch panels. Further bolstering our infrastructure, we received additional sanctions of One Crore each in March 2019 and December 2021. With these funds, we prioritized the purchase of laboratory equipment for various science departments and executed renovation works through PWD for the Chemistry, Nutrition & Dietetics, and Computer Science departments, as well as for the Basketball Ground and Auditorium. These endeavors have significantly enhanced the learning environment and facilities at our institution, aligning with the objectives of the RUSA scheme to promote access, equity, and excellence in higher education.

PROPOSED WORK

In response to the pressing need for additional classrooms due to overcrowding, a proposal was submitted under the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) scheme. Following the approval of the proposal, funding was allocated for the construction of new classrooms. These classrooms have significantly alleviated the strain on existing infrastructure and provided a conducive learning environment for students.

The acquisition of computers, printers, projectors, interactive touch panels, and science laboratory equipment for students serves to enrich the learning environment, promote collaboration and communication, enhance information processing, prepare students for the digital age, and stimulate curiosity and creativity. These resources are essential tools for equipping students with the skills and knowledge they need to succeed in their academic pursuits and beyond.

The proposed renovation work for the labs and auditorium building aims to create modern, safe, and accessible spaces that support academic excellence and enrich the learning experience for students and faculty alike. By investing in these essential facilities, the institution demonstrates its commitment to providing high-quality education and fostering innovation and creativity in teaching and research endeavors.

IMPLEMENTATION

NEW CONSTRUCTION - CLASS ROOMS

The newly constructed five classrooms serve as vital spaces for educational activities, enabling enhanced engagement and participation among students. With adequate seating arrangements, proper lighting, ventilation, and modern amenities, these classrooms facilitate effective teaching and learning experiences.

Students now have access to designated spaces conducive to concentration and academic excellence. The additional classrooms have also allowed for the expansion of educational programs and the introduction of new courses, further enriching the academic landscape of the institution.

Overall, the construction of these classrooms under the RUSA scheme has not only addressed the immediate need for infrastructure but has also paved the way for enhanced educational opportunities and student success.

Class Room - Inauguration

PURCHASE OF EQUIPMENTS

COMPUTERS, PRINTERS, PROJECTORS AND INTERACTIVE TOUCH PANEL

They are integral tools in educational institutions, serving students and departments across various functions like Academic Research and Learning, Collaboration and Communication. Students can collaborate on group projects using shared documents and communication tools like email or messaging apps. Computers facilitate online classes and discussions, allowing students to participate remotely. Students can communicate with professors, tutors, and advisors via email or online messaging platforms for academic guidance and support. Departments utilize computers to manage student records, registration, enrollment processes, schedule classes, exams, and other academic activities efficiently. Our Institutions deploy LMS platforms like Moodle or Canvas for course management, content delivery, and student engagement. Departments may require specific software tools for subjects like Computer Science, Physics, Mathematics, Zoology, Microbiology, Economics and Commerce. Computer Science Department often employs language learning software to aid students in language acquisition. Students create and deliver presentations using presentation software such as Microsoft PowerPoint. Maintain Computer labs equipped with specialized Software and Hardware for technical training and Skill development. Departments provide printing facilities for faculties to print Laboratory reports, and other academic materials.

Both projectors and interactive touch panels foster a more interactive and immersive learning environment, catering to diverse learning styles and promoting active participation. It also empower faculty members to deliver more effective and engaging lectures, ultimately enhancing the overall educational experience for our students.

DEPARTMENT OF PHYSICS – LABORATORY EQUIPMENTS

TRAVELLING MICROSCOPE SUPERIOR

It is used to measure the refractive index of specimens using the geometrical concepts of ray optics. A travelling microscope is used to determine refractive index of a glass slab. A traveling microscope can measure very short distances precisely, such as the diameter of a capillary tube.

SPECTROMETER SUPERIOR

A spectrometer is typically used to measure wavelengths of electromagnetic radiation (light) that has interacted with a sample. Study the spectra of the different sources of light. Measure the refractive index of the materials.

DIGITAL STORAGE OSCILLOSCOPE

They are used for doing research on power quality, determining levels of efficiency and examining the waveforms of electrical power. A digital storage oscilloscope makes use of a conventional cathode ray tube. DSO can be used to measure AC and DC voltages and currents.

AUDIO FREQUENCY OSCILLATOR

Oscillators convert DC signal to periodic AC signals which can be used to set frequency be used for audio applications or used as a clock signal. All microcontrollers and microprocessors require an oscillator to set the clock signal in order to function. Variable frequency oscillators are used in audio signal generators that are essential for testing amplifiers and fault tracing in many electronics systems.

FREQUENCY METER RESEARCH MODEL

Frequency meters are used in a variety of applications and industries. Heavy equipment vibration monitoring. Parasitic harmonics and cross-modulation detection within RF signals. RF signal calibration.AC motor tuning.Audio frequency pitch tuning.

DIGITAL MULTIMETER

A digital multimeter is a test tool used to measure two or more electrical values—principally voltage (volts), current (amps) and resistance (ohms). A digital multimeter uses a numeric display to show the exact value of the measurement. A digital multimeter, or DMM, measures and verifies multiple electrical quantities, including voltage, current and resistance. It's a daily diagnostic tool used by technicians and electrical engineers and combines the features of a voltmeter, ammeter and ohmmeter.

MICROPROCESSOR 8085

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It is used in washing machines, microwave ovens, mobile phones, etc.

IC TRAINER

The IC Trainer Kit is a type of electronic circuit that can help in creating working circuits. These electronic circuits are interlinked to form an operational circuit. A digital trainer kit typically includes a breadboard, logic input, pulse switches, power supply and logic switches. Each of these components is important for creating and testing digital circuits. The breadboard is helpful for prototyping circuits and testing them before soldering. Integrated circuit (IC) design is a process of interconnecting circuit elements to perform a specific desired function. Nearly every electronic device you use is made of ICs.

MAGNETICS STIRRER WITH HOT PLATE AND DIGITAL INDICATOR

The hotplate stirrer (or hot plate stirrer or hot plate magnetic stirrer) is used for mixing and heating aqueous solutions for a great variety of chemical reactions such as synthesis. A fully digital magnetic stirrer with a hot plate is a laboratory instrument used for mixing and heating solutions simultaneously.

STEFAN'S RADIATION CONSTANT

The proportionality constant used in the above equation of Stefan's law is called Stefan's constant. It is denoted by the symbol σ . Stefan's constant is used mainly for two things – for estimating the amount of heat a black body radiates and for the conversion of units.

CALCULATING THE RADIUS OF STARS

The radius of a star is calculated by its luminosity. The luminosity is the total power radiated by the star in space. It mainly depends on two factors, the surface area and the temperature. The relationship between the surface area of the body, the temperature of an object and the rate of radiation discharge is given by the Stefan-Boltzmann law.

THERMISTOR RESISTANCE VARIATION WITH TEMPERATURE AND ENERGY GAP

A thermistor is a resistance thermometer or a resistor whose resistance is dependent on temperature. The term is a combination of “thermal” and “resistor”. It is made of metallic oxides, pressed into a bead, disk or cylindrical shape and then encapsulated with an impermeable material such as epoxy or glass.

USES

Some of the most common uses of thermistors are in digital thermometers, in cars to measure oil and coolant temperatures and in household appliances such as ovens and refrigerators, but they are also found in almost any application that requires heating or cooling protection circuits for safe operation. For more sophisticated applications, such as laser stabilization detectors, optical blocks, and charge coupled devices. For example, a $10\text{ k}\Omega$ thermistor is the standard that is built into laser packages.

HALL EFFECT COMPLETE SET

Learning from the Hall Effect setup is very important in which one can do many experiments like moving a magnet towards and away from a solenoid. We can observe that the number of magnetic field lines passing through the coil increases and decreases concerning the change in distance between magnet and solenoid. The scope of learning is the extent and limits of a student's knowledge and is, therefore, one of the most critical factors in teaching.

UJT CHARACTERISTICS KIT

Intrinsic Standoff Ratio (η): This is a crucial parameter for a UJT, denoted by the Greek letter “ η ”. It is the ratio of voltage across RB1 (resistance from B1 to the point of PN junction) to the interbase voltage VBB when the emitter junction is open.

HALF ADDER AND FULL ADDER KIT

HALF ADDER

The Half Adder is a type of combinational logic circuit that adds two of the 1-bit binary digits. It generates carry and sum of both the inputs. A half adder is a type of adder, an electronic circuit that performs the addition of numbers. The half adder is able to add two single binary digits and provide the output plus a carry value. It has two inputs, called A and B, and two outputs S (sum) and C (carry).

FULL ADDER

The Full Adder is also a type of combinational logic that adds three of the 1-bit binary digits for performing an addition operation. Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is designated as S which is SUM.

LED - CHARACTERISTICS

LED (Light Emitting Diode) is an optoelectronic device which works on the principle of electro-luminance. Electro-luminance is the property of the material to convert electrical energy into light energy and later it radiates this light energy. The semiconductor in LED emits light under the influence of electric field. The symbol of LED is formed by merging the symbol of P-N Junction diode and outward arrows. These outward arrows symbolise the light radiated by the light emitting diode.

SPECIAL LOGIC GATE

It is sometimes desirable to have a logic gate that provides both inverted and non-inverted outputs. A single-input gate that is both a buffer and an inverter, with a separate output terminal for each function. Two-input gate that provides both the AND and the NAND functions in a single circuit. Such gates do exist and they are referred to as complementary output gates. The general symbology for such a gate is the basic gate figure with a bar and two output lines protruding from it. The internal circuitry of complemented gates is such that both inverted and non-inverted outputs change state at almost exactly the same time:

DEPARTMENT OF MICROBIOLOGY – LABORATORY EQUIPMENTS

HOT AIR OVEN

It is a type of dry heat sterilization equipment used in microbiology laboratories. This instrument easily destroys the microorganisms as well as bacterial spores with precise temperature control. It is used in microbiology laboratories to sterilize petriplates, pipettes, test tube before culturing microorganisms. It is also used to dry materials such as chemicals,

INCUBATOR

In microbiology laboratories, an incubator helps to grow bacteria, fungi, and other microorganisms. It helps in growing viruses in the cell cultures. It also helps to store biological specimens before analysis in medical microbiology practicals. It maintains optimal temperature, humidity and other conditions such as the CO₂ and oxygen content of the atmosphere inside. Hence, it is very important instrument for culturing microorganism to future identification.

LAMINAR AIR FLOW CHAMBER

It is used for tasks like cell culture, sample preparation and delicate experiments that require a sterile environment. It minimizes the risk of cross-contamination and ensures the accuracy of results during microbiological experiments while students working. It ensures the sterile environment while isolating DNA or RNA during molecular biology work and preventing contamination.

WATER BATH

The water bath is the preferred heat source for heating flammable compounds because it allows some chemical processes to occur at high temperatures. It can be used for reagent warming, substrate melting or microbial culture incubation. It improves the solubility of poorly soluble compounds. In food microbiology experiments it is used to check the quality of milk and water.

LABOMED VISION 2000 MICROSCOPE

Microscopes are the backbone of studying microbiology. It is used to view the details that cannot be seen by the naked eye such as the small parasites and small organisms. It is used to diagnose illness in clinically important microbes in medical microbiology experiments. It is used to magnify the blood samples, malaria parasites, RBC & WBC during immunology practical. It is used to study the structure of cells and spores in fungi while students performing wet mount and staining. It is also used to observe permanent slide during spotter's identification.

INDUCTION STOVE (BUTTERFLY)

Students used this induction stove to boil water, heat milk, medium preparation, melting agar, melting solidified medium during their regular practicas. Students also used this for sterilization during shortage of shortage of LPG gas.

THIN LAYER CHROMATOGRAPHY (TLC) CHAMBER

It is used to monitoring the progress of reactions during component analysis. It is used to separate and identify compounds present the samples during biochemistry practical. It is used to determine the purity of a substance during Industrial microbiology practical. It also used to detect pesticides or insecticides in agricultural and food microbiology practical.

DEPARTMENT OF CHEMISTRY – LABORATORY EQUIPMENTS

ICE FLAKING MECHINE

To Maintain the Temperature of the Organic and inorganic practical

HOT WATER BATH WITH SHAKER

To steadily shake and mix samples while maintaining a constant temperature.

ROTARY EVAPORATOR

The remove of solvents from liquid samples

MAGNETIC STIRRER WITH HOT PLATE

For mixing and heating aqueous solutions for a great Variety of chemical reactions.

DEPARTMENT OF NUTRITION AND DIETETICS – LABORATORY EQUIPMENTS

MUFFLE FURNACE (SANDY MAKE)

This method is used in food analysis extensively to determine the amount of minerals and micronutrients present in the food products. For this, it is important that the test sample is turned into ashes without the interference of any external factor. It is used to determine the ash content in food samples. Ash content is an important parameter in food analysis as it provides information about the mineral content and overall quality of the food.

PRECISION BALANCE (WENSAR MAKE)

A weighing balance is an instrument that is used to determine the weight or mass of an object. Precision Balance is used for a variety of applications, including: Food Sample (dry and fresh)

ANALYTICAL BALANCE (WENSAR MAKE)

Analytical balance is a delicate instrument which is used to weigh small amounts of substances accurately up to the fourth place of decimal. It is necessary for the volumetric analysis as the substances used to prepare standard solutions are weighed. Analytical balances are precision measuring instruments used in quantitative chemical analysis, to determine the mass of solid objects, liquids, powders and granular substances.

CENTRIFUGE (REMI MAKE)

The many applications of mechanical centrifugation in the food science laboratory. include: milk separation, cheese production, pulp control in juices, edible oil production, essential oil recovery, and production of starch and yeast. **Separation of phases:** Centrifuges are used to separate different phases in food products, such as solids, liquids, and fats. This separation is crucial for obtaining clear extracts, clarifying juices, and isolating specific components. Food and Nutrition laboratory centrifuges play a crucial role in the food analysis for a variety of purposes, contributing to both quality control and research and development efforts.

pH METER (LABMAN)

pH meter used in Food and Beverage Production Variability of pH in food and beverage production can lead to critical differences in taste, freshness and shelflife of a final product, making the pH value one of the parameters most frequently measured during inspection before release. pH meters used in clinical nutrition laboratories to analyze blood samples and assess acid-base imbalances in patients. A case study could focus on how pH meters aided in diagnosing and monitoring conditions.

DIGITAL REFRACTOMETER

The uses of refractometer for measuring the soluble solids content (SSC) in a solution, including sugar, salt, protein and acids. Understanding the content of a food or beverage can help improve its quality and consistency, ensuring correct composition in each batch and used to check the sugar content of grape juice for wine production, fruit juices, jelly and jam, honey, milk and many other kinds of beverages.

SPHYGMOMANOMETER (DISHA MAKE)

A sphygmomanometer is used to indirectly measure arterial blood pressure. phygmanometry is the process of manually measuring one's blood pressure. By detecting the force exerted by the heart in circulating blood, this device could measure blood pressure. It is beneficial to keep track of vital signs, particularly blood pressure, pulse rate, and rhythm.

SPECTROPHOTOMETER (ECONOMIC MODEL)

Spectrophotometer used to study the spectra of different sources of light and to measure the refractive indices of materials. Quantifying concentrations of compounds. Helps to Determine the structure of a compound. Finding functional groups in chemicals. Determining the molecular weight of compounds. Determining the composition of materials.

TRAY DRYER (SANDY MAKE)

Dryer used in important unit operations for preserving food. It is one of the most energy-intensive unit operations in postharvest processing. This unit operation is applied to reduce the water content of products such as various fruits, vegetables, cereals, pulses and herbal products, etc. after harvest. The purpose of reducing the water content is to prolong the shelf-life of the products of bio-origin by reducing the water activity to a level low enough where growth of microorganisms, enzymatic reactions, and other deteriorative reactions are inhibited.

DELUXE STUDENT MICROSCOPE

A microscope is an essential tool to see microorganisms that are too small to be seen by the naked eye. In order to use your microscope effectively and efficiently in your daily routine, it is necessary that you become familiar with the major sections of the microscope. These instruments enable students to observe very small structural details that are hard to see by eye, such as the structure of smooth muscle, cellular division, or the details of an insect. They also provide students with helpful hands-on experience instead of just reviewing images in a book or online.

DEPARTMENT OF ZOOLOGY – LABORATORY EQUIPMENTS

WATER ANALYZER 371

Students are easily analyzed the water samples in **Water Analyzer 371** instrument. It performed for various parameters such as pH, temperature, turbidity, chemical oxygen demand (COD),

biological oxygen demand (BOD), dissolved oxygen (DO), TOC, conductivity, total dissolved solid (TDS) etc. It's mainly used for B.Sc and M.Sc students for their practicals and Ph.D Scholars used this for their research work mainly for Chemical Oxygen Demand (COD), and Biological Oxygen Demand (BOD).

LAMINAR AIRFLOW CABINETS

A biochemistry lab is the most normal place to find a laminar airflow. All tissue and microbe cultures are sensitive to things floating in the air and so they have to be protected this way. Also, in the pharmaceutical industry, the labs use these devices commonly to work with medicines and cultures to test them on. The pharmacy factories also use larger versions of similar devices working on the same concept. Students utilized for sterilized the samples Blood samples and Culture the blood samples. Media preparation and culture preparation purpose its efficiently used. Genetic cell culture carried through laminar air flow for proper sterilization.

ROTAVAPOR

A rotary evaporator, also known as rotavap or rotovap, is a device used in chemical laboratories for the efficient and gentle removal of solvents from samples by evaporation¹². It has several applications. It is used for the efficient and gentle removal of solvents from samples by

evaporation. Prepare plant extraction and insect extraction Prepare for phytochemical analysis and animal driven chemicals. It's mostly used for M.Sc studentd and Ph.D scholars for their project works.

CENTRIFUGE - R-8C

One of the most common laboratory techniques is centrifugation, which is used to separate components of a mixture—often blood—based on component size and density by centrifugal force. Under centrifugal force, denser particles migrate toward the bottom of the tube to eventually form a pellet; the lighter particles will remain in the supernatant. A supernatant is a liquid or medium which remains above a pellet after centrifugation and is composed of lighter or smaller materials. Centrifugation techniques are integral to scientific research because they can separate and purify substances based on their physical properties. Centrifuge is one of the most important instruments used to study the blood sample. Extract the plant and animal samples to collect the supernatunt solution Crude extraction preparation Animal cell separation Serum separation from blood samples.

INCUBATOR

An incubator is a device used to grow and maintain microbiological cultures or cell cultures. The incubator maintains optimal temperature, humidity and other conditions such as the CO₂ and oxygen content of the atmosphere inside. Incubators are essential for much experimental work in cell biology, microbiology and molecular biology and are used to culture both bacterial and eukaryotic cells. It is mostly used for microbial culture for M.Sc and B.Sc students for their practical purposes, Egg incubation purpose, Milk microbial studied, Microbes growth population studies.

RENOVATION OF SCIENCE LABS ,BASKETBALL GROUND AND AUDITORIUM

The renovation of science labs has proven to be a significant boon for students, offering multifaceted benefits that enhance their educational experience and overall academic performance. By modernizing these facilities, our institutions is not only providing students with state-of-the-art equipment and resources but also creating dynamic learning environments conducive to experimentation, exploration, and discovery.

The purpose of renovating an auditorium, particularly when the existing one is unable to accommodate a large number of students, such as 3500, is to create a space that meets the growing needs of the educational institution. By expanding or refurbishing the auditorium, our institution aim to address issues of overcrowding and ensure that all students have access to essential events, such as assemblies, performances, and ceremonies.

The benefits of renovating the auditorium extend beyond mere capacity expansion. A larger and more modernized space can enhance the overall learning environment by facilitating various educational and extracurricular activities. It allows for larger gatherings, fostering a sense of community and unity among students, faculty, and staff. Moreover, a well-equipped and comfortable auditorium can serve as a hub for cultural events, guest lectures, and student performances, enriching the academic experience and promoting creativity

Computer Lab

Computer Lab

Nutrition Lab

Nutrition Lab

Basketball Ground

Basketball Ground

Auditorium

Auditorium

Auditorium

INSPECTION PHOTOS

CONCLUSION

The sanctioning of two Crores under the RUSA scheme (Infrastructure grants to colleges – Component 7.0) for the construction of new classrooms, purchase of equipment, and renovation work presents significant benefits for both students and our Institution.

Firstly, the construction of new classrooms addressed the pressing need for additional space, accommodating a growing student population and ensuring a conducive learning environment. This expansion will alleviate overcrowding issues, allowing for better classroom management and facilitating improved student-teacher interaction.

Secondly, the purchase of equipment enhanced the educational experience by providing students with access to modern learning tools and technologies. This investment enabled us to equip laboratories, libraries, and other facilities with state-of-the-art equipment, fostering hands-on learning and skill development across various disciplines.

Furthermore, the renovation work outlined in the proposal revitalized the existing infrastructure, ensuring safety, functionality, and aesthetic appeal. Renovated facilities will contribute to a positive campus environment, instilling a sense of pride among students and faculty members.

Overall, the implemented RUSA project will significantly elevate the quality of education and the overall campus experience. Students will benefit from improved facilities, enhanced resources, and a more conducive learning environment, while our institution will gain recognition for their commitment to excellence and innovation in education.

FUTURE EXTENSION

The implementation of the RUSA (Rashtriya Uchchatar Shiksha Abhiyan) scheme has led to advancements in various departments within our Institution. However, it has become evident that the resources allocated through this scheme are insufficient to keep pace with current technologies and adequately cater to the needs of students. There is a pressing need for additional funds to be allotted to our institution. These funds would facilitate the integration of cutting-edge technologies, enhance the quality of education, and ensure that students are equipped with the necessary skills for the evolving job market. Addressing this funding gap is crucial to fostering excellence and innovation within the educational landscape.

